Version
Appliances
A pre-configured and fully integrated software stack with TensorFlow, an open source software library for machine learning, Python 2.7, and Jupiter Notebook, a browser-based interactive notebook for programming, mathematics, and data science. The stack is designed for research and development tasks and optimized for running on NVidia GPU.
A pre-configured and fully integrated software stack with TensorFlow, an open source software library for machine learning, Python 3.6, and Jupiter Notebook, a browser-based interactive notebook for programming, mathematics, and data science. The stack is designed for research and development tasks and optimized for running on NVidia GPU.
A pre-configured and fully integrated software stack with TensorFlow, an open source software library for machine learning, Python 3.6, and Jupiter Notebook, a browser-based interactive notebook for programming, mathematics, and data science. The stack is designed for research and development tasks and optimized for running on CPU.
A pre-configured and fully integrated software stack with TensorFlow, an open source software library for machine learning, Python 2.7, and Jupiter Notebook, a browser-based interactive notebook for programming, mathematics, and data science. The stack is designed for research and development tasks and optimized for running on CPU.
A pre-configured and fully integrated software stack with Caffe deep learning framework and Python 3.6. It provides a stable and tested execution environment for training, inference, or running as an API service. The stack can be easily integrated into continuous integration and deployment workflows. It is designed for short and long-running high-performance tasks and optimized for running on NVidia GPU.
A pre-configured and fully integrated software stack with Caffe deep learning framework and Python 2.7. It provides a stable and tested execution environment for training, inference, or running as an API service. The stack can be easily integrated into continuous integration and deployment workflows. It is designed for short and long-running high-performance tasks and optimized for running on NVIdia GPU.
A pre-configured and fully integrated software stack with Caffe deep learning framework and Python 3.6. It provides a stable and tested execution environment for training, inference, or running as an API service. The stack can be easily integrated into continuous integration and deployment workflows. It is designed for short and long-running high-performance tasks and optimized for running on CPU.